Learning Symmetry and Low-energy Locomotion
نویسندگان
چکیده
Learning locomotion skills is a challenging problem. To generate realistic and smooth locomotion, existing methods use motion capture, finite state machines or morphology-specific knowledge to guide the motion generation algorithms. Deep reinforcement learning (DRL) is a promising approach for the automatic creation of locomotion control. Indeed, a standard benchmark for DRL is to automatically create a running controller for a biped character from a simple reward function [Duan et al. 2016]. Although several different DRL algorithms can successfully create a running controller, the resulting motions usually look nothing like a real runner. This paper takes a minimalist learning approach to the locomotion problem, without the use of motion examples, finite state machines, or morphology-specific knowledge. We introduce two modifications to the DRL approach that, when used together, produce locomotion behaviors that are symmetric, low-energy, and much closer to that of a real person. First, we introduce a new term to the loss function (not the reward function) that encourages symmetric actions. Second, we introduce a new curriculum learning method that provides modulated physical assistance to help the character with left/right balance and forward movement. The algorithm automatically computes appropriate assistance to the character and gradually relaxes this assistance, so that eventually the character learns to move entirely without help. Because our method does not make use of motion capture data, it can be applied to a variety of character morphologies. We demonstrate locomotion controllers for the lower half of a biped, a full humanoid, a quadruped, and a hexapod. Our results show that learned policies are able to produce symmetric, low-energy gaits. In addition, speed-appropriate gait patterns emerge without any guidance from motion examples or contact planning.
منابع مشابه
بررسی تقارن ادوار تجاری با رویکرد آنالیز موجک
Symmetry or asymmetry of the business cycle is an important issue in order to select the behavior patterns and prediction of macroeconomic fluctuations. Factors such as oil prices, the financial crisis, uncertainty, the delay on learning, etc., Can cause lack of symmetry in the cycle. Decomposition of the business cycle by wavelet transform, which is strong instrument for processing data, and r...
متن کامل[Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].
One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially wit...
متن کاملRobot and locomotion-controller design optimization for a reconfigurable quadruped
We present an automated approach to robot and locomotion-controller design optimization, using reinforcement learning methods that have been successfully demonstrated to teach a real prototype quadruped various walking gaits. The same machine learning methods are used here for a different purpose: to optimize robot and locomotion-controller design. Optimization can be used before or after build...
متن کاملA Computational Study to Find the Vibrational Modes Connected with Specific Molecular Structures of Calculated Compound
The purpose of this research is to provide a deeper understanding of the planar high- symmetry configuration instability. In the ideal case, the distortion corresponds to the movements of nuclei along normal modes that belong to non-totally symmetric irreps of the high symmertry (HS) point group of molecule. The analysis of the structural distortion from the HS nuclear arrangements of the JT ac...
متن کاملDid internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals?
The standard explanation for the origin of bilateral symmetry is that it conferred an advantage over radial symmetry for directed locomotion. However, recent developmental and phylogenetic studies suggest that bilateral symmetry may have evolved in a sessile benthic animal, predating the origin of directed locomotion. An evolutionarily feasible alternative explanation is that bilateral symmetry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.08093 شماره
صفحات -
تاریخ انتشار 2018